MATERIAL SPECIFICATION FOR
HOT MIX ASPHALT

TABLE OF CONTENTS

1150.01 SCOPE
1150.02 REFERENCES
1150.03 DEFINITIONS
1150.04 SUBMISSION AND DESIGN REQUIREMENTS
1150.05 MATERIALS
1150.06 EQUIPMENT
1150.07 PRODUCTION
1150.08 QUALITY ASSURANCE
1150.09 OWNER PURCHASE OF MATERIAL - Not Used

Appendices:

1150-A Commentary
1150-C Mix Requirement for HL 3HS

1150.01 SCOPE

This specification covers the requirements for the materials, equipment, and methods to be followed for proportioning and mixing hot mix asphalt, including recycled mixes and mixes for miscellaneous work.

1150.01.01 Significance and Use of Appendices

Appendices are not a mandatory part of this specification unless invoked by the Owner.

Appendix 1150-A: is a commentary appendix to provide designers with information on the use of the specification in a Contract.
Appendix 1150-B: is an additional information option that is invoked only when referenced in the Contract Documents by the Owner. This appendix provides the Owner with the option to adjust stability requirements for lower traffic volume facilities.

Appendix 1150-C: is an additional information option that is invoked only when referenced in the Contract Documents by the Owner. This appendix is invoked based on availability, aggregate properties, and experience with the local aggregate sources.

1150.02 REFERENCES

This specification refers to the following standards, specifications, or publications:

Ontario Provincial Standard Specifications, General:

OPSS 102 Weighing of Materials

Ontario Provincial Standard Specifications, Material:

OPSS 1001 Aggregates - General
OPSS 1003 Aggregates - Hot Mix Asphalt
OPSS 1101 Performance Graded Asphalt Cement

Ministry of Transportation, Ontario, Publications:

MTO Laboratory Testing Manual:

LS-261 Preparation of Marshall Specimens
LS-262 Bulk Relative Density of Compacted Bituminous Mixes
LS-264 Theoretical Maximum Relative Density of Bituminous Paving Mixtures
LS-265 Percent Air Voids in Compacted Dense Bituminous Pavement Mixtures
LS-282 Quantitative Extraction of Asphalt Cement and Analysis of Extracted Aggregate from Bituminous Paving Mixtures
LS-283 Resistance to Stripping of Asphalt Cement in Bituminous Mixtures by Immersion Marshall
LS-292 Quantitative Determination of Asphalt Cement Content by Ignition and Analysis of Remaining Aggregate From Bituminous Paving Mixtures
LS-307 Preparation of Recycled Hot Mix Design

Designated Sources for Materials Manual

Asphalt Institute Publications:

Manual Series No. 2, MS-02 Mix Design Methods for Asphalt Concrete and Other Hot-Mix Types

American Association of State Highway and Transportation Officials (AASHTO):

M 320-02 Standard Specification for Performance Graded Asphalt Binder
For the purpose of this specification, the following definitions apply:

AMRL: means the AASHTO Materials Reference Laboratory.

Binder Course: means a hot mix asphalt (HMA) course between a surface course and either a granular base course or stabilized base course, an existing pavement, or another HMA binder course.

Blending Aggregates: means any coarse or fine aggregate that is added to HMA in order to produce hot mix that is according to this specification.

Business Day: means any Day except Saturdays, Sundays, or statutory holidays.

CCIL: means the Canadian Council of Independent Laboratories.

Field Adjustment to the JMF: means adjustments to the target gradation or asphalt cement content or both of a mix without a redesign of the HMA, resulting in a revised job-mix formula (JMF).

HL, Hot Mix, Mixture, Mix, and Hot Mix Asphalt: means hot mixed, hot laid asphaltic concrete. The terms are used interchangeably. HMA may include recycled or specialty mixes.

Hot Mix Types: means those specified in Table 1.

Job-Mix Formula: means the percentage passing on each designated sieve of the total mass of aggregate and the amount of asphalt cement as a percentage by mass of the mixture that are based on specified mix design procedures, and when mixed will result in a paving mixture that is according to this specification.

Levelling Course: means a HMA course of variable thickness used to eliminate transverse and longitudinal irregularities on an existing surface prior to placing an HMA binder or surface course.

Mix Design: means the design of the proportions of aggregates, asphalt cement, and additives when uniformly mixed results in an acceptable HMA in accordance with the specified method.

Mixes for Miscellaneous Work: means HMA used for miscellaneous work such as the paving of shoulders, boulevards and sidewalks, and the construction of curb and gutter and spillways. These mixes do not meet normal HMA gradation and mix design requirements.

Performance Graded Asphalt Cement (PGAC): means an asphalt binder that is an asphalt-based cement produced from petroleum residue, either with or without the addition of non-particulate modifiers, according to AASHTO M 320.

Reclaimed Asphalt Pavement (RAP): means the processed HMA material that is recovered by partial or full depth removal.

Recycled Hot Mix (RHM): means an HMA that contains RAP.

Surface Course: means the HMA wearing course of any flexible or composite pavement.
1150.04 SUBMISSION AND DESIGN REQUIREMENTS

1150.04.01 Mixture Requirements for Design Purposes

The mixture made during mix design shall be according to the requirements specified in Tables 2, 3, 4, 5, 6, and 7.

The JMF shall be according to the requirements specified in Tables 2 and 3.

1150.04.01.01 RAP Proportions

The use of:

a) Up to 15% by mass of RAP shall be permitted for HL 3, HL 3F, HL 4, and HL 4F surface course mixes.

b) Up to 20% by mass of RAP shall be permitted for medium duty binder course (MDBC) mix.

c) Up to 30% by mass of RAP shall be permitted for HL 4 and HL 8 binder mixes.

d) When 31% to 50% by mass of RAP is proposed for HL 4 or HL 8 binder mixes, written approval by the Contract Administrator must be obtained for the mix design, including PGAC modification.

e) Over 50% by mass of RAP is not permitted for any mix.

1150.04.02 Mix Design

1150.04.02.01 General

The mix design shall be the responsibility of the Contractor. The job-mix formulae selected for use by the Contractor shall produce hot mix that is in accordance to all requirements specified in the Contract Documents.

1150.04.02.02 Mix Design Method

The Contractor shall utilize a laboratory that has current CCIL Type A Certification or AMRL equivalent certification or other equivalent certified laboratory acceptable to the Contract Administrator to conduct all mix designs, designate the mix proportions, and prepare the job-mix formulae. For all mixes, except those that contain RAP, the mix design procedures and tests shall be in accordance to the Marshall Method in the Asphalt Institute Manual Series No. 2, MS-02, following the LS-261, LS-262, LS-263, LS-264, LS-265, and LS-283 tests and the requirements detailed herein. Mix design procedures for mixes that contain RAP shall be in accordance to Test Method LS-307.

All mixes shall be designed using 75 blows per side of the test specimen with a manual compaction hammer or a mechanical equivalent to 75 blows per side of the test specimen with a manual compaction hammer.

The aggregate gradings used for the mix design may be gradings provided by the Contractor or the actual gradings of the mix design aggregate samples. However, when the mix is to be produced from a plant that returns fines to the mixture or the aggregate gradations change during production due to aggregate breakdown, appropriate adjustments shall be made to the mix design gradations.

When a mix contains additives and the source of asphalt cement changes from that used in the mix design, tests shall be re-done to verify the dosage of such additives.
RAP as processed and ready for use in a HMA shall be tested by the Contractor using test LS-282 or LS-292 to determine the average percentage asphalt cement and the average gradation for the extracted reclaimed asphalt pavement aggregates.

1150.04.02.03 Mix Design Submission

The Contractor shall submit in writing the proposed mix design and JMF to the Contract Administrator a minimum of 10 business days prior to the start of the paving operation. The mix shall not be placed until the Contract Administrator provides permission to construct hot mix using the submitted JMF. The Contract Administrator will provide in writing the above permission or the reason why the permission is being withheld within 10 business days, which commence when all of the required samples and documents have been submitted.

1150.04.02.04 Changes to the JMF and the Mix Design

Changes to the JMF will be permitted when it has been determined that the mix properties specified in the Contract Documents are not being met. All changes are subject to the conditions specified below.

Changes to the material proportions based on process control test results will be permitted without a new mix design, but further hot mix production will be subject to conditions imposed by the Contract Administrator. In this situation, when the Contractor changes the JMF, the revised JMF shall be submitted to the Contract Administrator. The Contract Administrator will review the revised JMF for conformance to the mix properties with the Contract requirements. Within 1 business day of the modified JMF being received in full by the Contract Administrator, the Contract Administrator will provide in writing conditional permission to construct HMA or the reason why permission is being withheld.

When the Contractor submits a new mix design, it must be accompanied by samples for monitoring purposes, if required; a Mix Design Report; and the supporting documents as detailed in the Documents subsection. New mix design and mix designation documents and a new JMF shall be completed when:

a) A material is eliminated.

b) A new material is added.

c) It is not possible to comply with the maximum permitted fine aggregate blending ratio.

d) Changes to the material proportions have not resulted in correction of the problems with the mix.

e) The net impact of all adjustments to the original JMF exceed any of the maximum field adjustments specified in Table 8.

New mix design, new JMF documents, and new samples, if required, for monitoring purposes shall be delivered to the Contract Administrator. The new mix design will be accepted or rejected within 5 business days, which commence when all of the required samples and documents have been submitted.

1150.04.03 Samples for Monitoring Purposes

Representative samples of the materials to be used in the work shall be provided to the Contract Administrator at the same time that the mix design and JMF documents are submitted.

The samples shall be labelled with the Contract number, material type, material source, and date of sampling. The samples of coarse aggregate, fine aggregate, and blending aggregates shall be identified.
Each material sample shall be packaged separately and the samples shall be in containers that are clean, closed, and will not rupture when lifted or handled. Each filled sample container shall have a maximum mass of 25 kg.

The minimum sample quantities are specified in Table 9.

1150.04.04 Documents

The Contract Administrator shall be provided with a copy of the mix design and JMF documents that shall be signed, dated, and certified correct by the person accountable for the engineering and management responsibility for the laboratory that conducted the work. When the Owner has a Bituminous Mix Design Report form, that form may be required along with other supporting documents. Information shall be provided in a legible manner. The documents shall include, but are not limited to, the following information:

a) Contract number, item number, and mix type for which the mix design and JMF were completed and a description of the usage of the mix on the Contract.

b) All test results, mix design work sheets, and graphs.

c) Material proportions and sources, including the Owner’s Mineral Aggregate Inventory for the aggregate sources, when such information is available. The amount of RAP in percent by mass and volumetric data shall also be included.

d) Designation of the fine aggregate and the coarse aggregate.

e) PGAC and source and percent by mass of the required new asphalt cement.

f) A graph of the temperature-viscosity relationship for the PGAC that is to be used in the mix shall be produced as per LS-261.

g) Information on additives, including source, type, percent by mass of asphalt cement, and test results as per LS-283, when anti-stripping tests are required.

h) Information regarding fines that are returned to the mix, aggregate breakdown during production, and the resultant change in the aggregate gradations.

i) For both coarse and fine aggregates, complete grading and volumetrics are required.

j) The percent air voids, Marshall flow, voids in mineral aggregate, and Marshall stability of the mixture selected and the mix design criteria to be met for each test.

l) Aggregate absorptions.

m) Bulk relative density and saturated surface dry density for each aggregate.

n) Mix bulk relative density.

o) Mix maximum relative density.

p) Mix maximum relative density and surface dry density, where applicable.
q) Extracted bulk relative density, percentage asphalt cement, and gradation for the RAP used in the mix, when RAP is permitted for use.

r) All visual observations made during the design process with particular attention and comments regarding stripping and coating for both the coarse and fine aggregates.

s) The JMF.

t) The mixing and compaction temperature used in the mix design and the compaction temperature of the reheated mixture to be employed in the testing of the production mix.

u) The typical mix weight to produce a briquette with a height of 63.5 mm ±1.5 mm.

1150.04.05 Anti-Stripping Additives

The Contractor shall determine the need for and the amount of anti-stripping additive required using LS-283, unless waived in writing by the Owner.

The need for and the amount of anti-stripping additive required shall not be affected by any previous determination made with respect to the same or any other aggregate source.

Regardless of the hot mix type, the amount of anti-stripping additive either specified in the Contract Documents or determined through mix design procedure shall be a percentage of the total asphalt cement required.

The amount of anti-stripping additive required shall be the greater of the:

a) Amount required to provide a minimum of 70% retained stability, as determined by LS-283.

b) Minimum dosage requirements outlined in the Ministry's Designated Sources for Materials manual for asphalt aggregates.

Whenever an anti-stripping additive is required, the following applies:

a) For all DFC mixes or other mixes consisting of more than 75% dolomitic sandstone or meta-arkose aggregates or combinations thereof, the anti-stripping additive shall be hydrated lime (Ca(OH)₂) with a minimum dosage requirement of 1% by mass of the total dry aggregate.

b) For all other combinations of aggregates, the anti-stripping additive may be hydrated lime or a chemical agent.

Anti-stripping additive shall be used according to supplier information. The following information on the hydrated lime anti-stripping additive shall be provided to the Contract Administrator:

a) Documentation that the hot mix shall be produced in accordance to all requirements of the Contract.

b) Amount of hydrated lime to be used as determined in the mix design procedures.

c) Complete information on how the hydrated lime is to be used and how the hydrated lime is to be incorporated into the mixture.

d) The amount of hydrated lime as a percentage of the specified aggregate.
1150.05 MATERIALS

1150.05.01 Asphalt Cement

Asphalt cement shall be performance graded asphalt cement according to OPSS 1101. The supply and use of asphalt cement shall be as specified in the Contract Documents.

1150.05.02 Aggregates

Aggregates shall be according to OPSS 1003.

1150.05.02.01 RAP

RAP, where permitted in a HMA, shall be according to the aggregate requirements of OPSS 1003 for the mix type specified in the Contract Documents. Absorption, freeze thaw, and magnesium sulphate requirements do not apply to RAP.

RAP that is contaminated with deleterious material shall not be used and shall be removed from the work. RAP shall be stockpiled conforming to the stockpiling requirements for coarse aggregates according to OPSS 1001.

Process control sampling and testing of the reclaimed asphalt pavement shall be as specified in the Contract Documents.

1150.05.03 Silicone

When added to the asphalt cement, silicone oil shall be less than five parts per million of asphalt cement.

1150.05.04 Filler

Filler shall be according to OPSS 1003.

1150.06 EQUIPMENT

1150.06.01 Requirements for all Mixing Plants

The equipment shall be such that the HMA produced shall meet this specification and shall demonstrate adequate control and documentation of the HMA materials, mixing temperature, and storage for monitoring and production purposes.

When required by the Contract Administrator, all equipment shall be on the site and available for inspection before operations are commenced and during production operations.

1150.06.02 Truck Scales

Truck scales shall be according to OPSS 102.
1150.07 PRODUCTION

1150.07.01 General

The hot mix shall be produced to meet the submitted JMF or the adjusted JMF that was accepted in writing by the Contract Administrator.

The Contractor shall be responsible for the quality and characteristics of the mixture. If the hot mix produced does not meet the requirements of this specification, hot mix production shall stop and appropriate corrections shall be made to the process.

The Contractor is responsible for the process control and condition of all materials during the handling, blending, and mixing operations. The Contractor is responsible for determining and making all necessary adjustments in proportioning materials used to produce HMA to meet the Contract requirements.

1150.07.02 Operational Constraints

The JMF is the target to which the hot mix shall be compared to determine the acceptance of the aggregate gradation and asphalt cement. HMA shall not be placed until the Contract Administrator provides permission in writing to proceed with a submitted JMF.

The JMF shall remain in effect until the Contract Administrator receives any requested changes in writing and approves them.

1150.07.03 Handling of Materials

1150.07.03.01 Aggregate Stockpile Requirements

Before any production of the mixture is started, stockpiles of each size and gradation of aggregate shall be provided at the asphalt plant site. Each stockpile shall contain sufficient aggregate for one full day's production of hot mix, before that day's paving begins.

1150.07.03.02 Aggregates

1150.07.03.02.01 General

Aggregates shall be loaded into the cold feed bins in a manner that prevents the mixing of separate sizes of aggregates.

1150.07.03.02.02 Batch and Continuous Mixing Plants

When delivered to the mixing plant, the heated and dried aggregate shall be at a temperature consistent with proper mixing and laying of the mix. Surfaces of all dried aggregates shall be free of carbon or unburnt fuel oil.

1150.07.03.03 Anti-Stripping Additives

1150.07.03.03.01 Liquid Anti-Stripping Additives

Anti-stripping additive shall be handled and mixed with the asphalt cement according to the manufacturer's recommendations.
The Contractor shall provide the Contract Administrator with the following documentation:

a) Verification that the chemical anti-stripping additive shall remain stable in the heated asphalt cement for a minimum of 4 Days.

b) Type and dosage of anti-stripping additive used.

c) Time, date, and temperature when anti-stripping was added to the asphalt cement.

If the liquid anti-stripping additive is added to the asphalt cement at the refinery or asphalt cement depot, the Contractor shall provide the Contract Administrator with the above documentation in the form of a weighbill or bill of lading that accompanies each tanker of asphalt cement delivered.

If liquid anti-stripping additive is added to the asphalt tank at the hot mix plant, the liquid agent may be added to the asphalt tank by an in-line metering device or by another means, provided the above documentation is given to the Contract Administrator for each batch of asphalt cement to which anti-stripping agent is added.

If a liquid anti-stripping additive is not added to the asphalt tank, a continual record of the process for adding the additive shall be provided to the Contract Administrator in addition to the above documentation each time liquid anti-stripping additive is metered into the asphalt cement.

The Contract Administrator shall be provided with an approved statement of calibration for any metering device used to add the liquid anti-stripping additive.

1150.07.03.03.02 Hydrated Lime

When hydrated lime is added to the mix, it shall be added to all aggregates requiring an anti-stripping agent by one of the following methods:

a) Hydrated lime slurry shall be homogeneously mixed with the aggregate in a pugmill or tumble mixer, prior to entering the asphalt plant.

b) Hydrated lime shall be homogeneously mixed with wetted aggregate in a pugmill or tumble mixer, prior to entering the asphalt plant. The wetted coarse and fine aggregate shall have a sufficient moisture content to ensure uniform and complete adhesion of lime to the aggregate.

c) Hydrated lime shall be homogeneously mixed with the aggregate at the pit or quarry, prior to delivery of the limed aggregate to the hot mix plant.

Regardless of the mixing equipment or procedure used, the aggregate must possess a uniform and homogeneous coating of hydrated lime. Aggregate treated with hydrated lime shall be used within the same construction season it is treated. Aggregate that was treated and stored from a previous construction season may be used only if the Contract Administrator agrees to a written proposal from the Contractor. The written proposal must verify the effectiveness of the stored aggregate, indicate the sampling protocol used, and include the current test results from samples that indicate the aggregate meets the Contract requirements for retained stability.

1150.07.04 Preparation of the Mixture

Proportioning and mixing of materials shall be of sufficient accuracy and duration to produce a uniform homogeneous mixture in which all particles of the aggregate are thoroughly and uniformly coated.
The temperature of the mixture, except for RHM, as it is discharged from the mixer shall be controlled within the temperature range that corresponds to the PGAC manufacturer's recommending mixing temperature.

1150.08 QUALITY ASSURANCE

1150.08.01 General

The Contractor shall obtain for the Contract Administrator, within 1 business day of submission of request in writing, the right to enter upon the premises of any of the material manufacturers, suppliers, plants, laboratories, or equipment for purposes pertaining to the work, to carry out such inspection, sampling, and testing as specified or as requested by the Contract Administrator.
<table>
<thead>
<tr>
<th>Hot Mix Type (Note 1)</th>
<th>Abbreviation</th>
<th>Summary of Hot Mix Use and Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense Friction Course</td>
<td>DFC</td>
<td>A dense-graded surface course mix with high frictional resistance for high volume roads. Aggregates have an identical gradation to HL 1 aggregates with a maximum aggregate size of 16 mm. Premium 100% crushed aggregates are used for fine and coarse aggregates that are from the same source. (Note 2)</td>
</tr>
<tr>
<td>Hot Laid 1</td>
<td>HL 1</td>
<td>A dense-graded surface course mix with a premium quality coarse aggregate. It is used on high volume roads and has a maximum aggregate size of 16 mm. Coarse aggregates are 100% crushed material. (Note 2)</td>
</tr>
<tr>
<td>Hot Laid 2</td>
<td>HL 2</td>
<td>A sand mix used primarily as a levelling course on existing pavements or a surface course on low speed traffic areas requiring a thin overlay. It is also used to fill wide cracks and has 100% of the aggregate passing the 9.5 mm sieve size.</td>
</tr>
<tr>
<td>Hot Laid 3</td>
<td>HL 3</td>
<td>A dense-graded surface course mix for intermediate volume roads with a maximum aggregate size of 16 mm.</td>
</tr>
<tr>
<td>Hot Laid 3 High Stability</td>
<td>HL 3HS</td>
<td>A dense-graded padding and levelling mix of high stability. The coarse aggregate conforms to the physical requirements of HL 3 with a maximum aggregate size of 16 mm. The fine aggregate conforms to the same physical requirements as HDBC. Coarse and fine aggregates are 100% crushed material.</td>
</tr>
<tr>
<td>Hot Laid 3 Fine</td>
<td>HL 3F</td>
<td>A fine-graded mix used as a surface course where hand work is necessary for placement. It is also used on low volume roads, driveways, boulevards, etc. The maximum aggregate size is 16 mm.</td>
</tr>
<tr>
<td>Hot Laid 4</td>
<td>HL 4</td>
<td>A dense-graded mix used as a surface or binder course on low volume roads. The maximum aggregate size is 19 mm.</td>
</tr>
<tr>
<td>Hot Laid 4 Fine</td>
<td>HL 4F</td>
<td>A fine graded mix used as a surface course where hand work is necessary for placement. It is also used on low volume roads, driveways, boulevards, etc. The maximum aggregate size is 19 mm.</td>
</tr>
<tr>
<td>Hot Laid 8</td>
<td>HL 8</td>
<td>A coarse-graded binder course mix. The maximum aggregate size is 26.5 mm.</td>
</tr>
<tr>
<td>Medium Duty Binder Course</td>
<td>MDBC</td>
<td>A binder course mix intended for use in locations where rutting and deformation is likely to occur due to frequent heavy traffic loading. A minimum of 80% of the coarse aggregates must have two crushed faces and the maximum aggregate size is 26.5 mm.</td>
</tr>
<tr>
<td>Heavy Duty Binder Course</td>
<td>HDBC</td>
<td>A high stability binder mix designed to provide superior resistance to rutting. Both fine and coarse aggregates are 100% crushed material. The maximum aggregate size is 26.5 mm.</td>
</tr>
</tbody>
</table>

Notes:

1. Specification requirements for the RHM are identical to those of the new hot mixes.

2. As listed in the Ministry's Designated Sources for Materials manual for coarse aggregates for HL 1, DFC, and fine aggregates for DFC.
Table 2
Gradation Requirements - Mix Design Criteria

<table>
<thead>
<tr>
<th>Mix Types</th>
<th>Percentage Passing by Dry Mass of Aggregates</th>
<th>Sieves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26.5</td>
</tr>
<tr>
<td>DFC and HL 1</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>HL 2</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>HL 3 and HL 3HS</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>HL 3F</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>HL 4</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>HL 4F</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>HL 8 and MDBC</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>HDBC</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Notes:

1. HL 1 mix for use on facilities with a posted speed of less than 80 km/h shall contain a maximum of 60% by volume of the total aggregates passing the 4.75 mm sieve. The coarse aggregates used shall be approved for HL 1 and shall be listed in the Ministry's Designated Sources for Materials manual.

2. HL 1 mix for use on facilities with a posted speed of 80 km/h or greater shall contain a maximum of 50% by volume of the total aggregates passing the 4.75 mm sieve. The coarse aggregates used shall be approved for HL 1 and shall be listed in the Ministry's Designated Sources for Materials manual.

Table 3
Asphalt Cement Content - Mix Design Criteria

<table>
<thead>
<tr>
<th>Hot Mix Type</th>
<th>% Asphalt Cement Content, minimum by mass of mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL 1, HL 3, and HL 4</td>
<td>5.0</td>
</tr>
<tr>
<td>DFC</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>5.1</td>
</tr>
<tr>
<td>HL 2</td>
<td>6.0</td>
</tr>
<tr>
<td>HL 3F and HL 4F</td>
<td>5.5</td>
</tr>
<tr>
<td>HDBC, MDBC, and HL 8</td>
<td>4.7</td>
</tr>
<tr>
<td>HL 3HS</td>
<td>5.0</td>
</tr>
</tbody>
</table>
Table 4
Air Voids - Mix Design Criteria

<table>
<thead>
<tr>
<th>Hot Mix Type</th>
<th>% Air Voids</th>
</tr>
</thead>
<tbody>
<tr>
<td>All mixes, except HL 2 Surface and DFC</td>
<td>4.0 ± 0.5</td>
</tr>
<tr>
<td>HL 2 Surface</td>
<td>5.0 ± 0.5</td>
</tr>
<tr>
<td>DFC</td>
<td>3.5 ± 0.3</td>
</tr>
</tbody>
</table>

Table 5
Marshall Flow - Mix Design Criteria

<table>
<thead>
<tr>
<th>Minimum Marshall Flow: Units of 0.2 mm at 3.5% Air Voids</th>
</tr>
</thead>
<tbody>
<tr>
<td>All mixes, except HL 2, HL 3F, and HL 4F</td>
</tr>
<tr>
<td>HL 2, HL 3F, and HL 4F</td>
</tr>
</tbody>
</table>

Table 6
Marshall Stability - Mix Design Criteria for All Paving Mixtures

<table>
<thead>
<tr>
<th>Minimum Marshall Stability: N at 60°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Course, except for HL 2, HL 3F, HL 4F, and HL 3HS</td>
</tr>
<tr>
<td>Binder, Levelling, and Padding Courses, except for HL 2, HL 3F, HL 4F, HL 3HS, and HDBC</td>
</tr>
<tr>
<td>HL 2, HL 3F, and HL 4F Surface Course</td>
</tr>
<tr>
<td>HL 2, HL 3F, and HL 4F Levelling and Binder Courses</td>
</tr>
<tr>
<td>HL 3HS and HDBC</td>
</tr>
</tbody>
</table>
Table 7
VMA Requirements - Mix Design Criteria

<table>
<thead>
<tr>
<th>Hot Mix Type</th>
<th>Passing 4.75 mm Sieve by Mass</th>
<th>Nominal Maximum Particle Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.36 mm</td>
<td>4.75 mm</td>
</tr>
<tr>
<td>All Mixes Except HL 2 and DFC (Note 2)</td>
<td>40%</td>
<td>13.5</td>
</tr>
<tr>
<td></td>
<td>45%</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>14.5</td>
</tr>
<tr>
<td></td>
<td>55%</td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td>60%</td>
<td>15.5</td>
</tr>
<tr>
<td>more than 60%</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>HL 2</td>
<td>21.0</td>
<td>18.0</td>
</tr>
</tbody>
</table>

Notes:

1. The percent voids in compacted mineral aggregate allowing for volume of absorbed asphalt, percent VMA, is based on the nominal maximum particle size of the total aggregate. Nominal maximum particle size is the sieve next larger than the designated large sieve on which no more than 90% of the total aggregate is accumulatively passing.

2. The percent voids in mineral aggregate and asphalt cement film thickness in DFC mix based on MS-02 shall be reported in the mix design.

Table 8
Permitted Field Adjustment to a JMF

<table>
<thead>
<tr>
<th>JMF Property</th>
<th>Maximum Field Adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt cement content</td>
<td>±0.2%</td>
</tr>
<tr>
<td>Percent RAP</td>
<td>- 5.0%</td>
</tr>
<tr>
<td>Percent passing 26.5 mm, 19.0 mm, and 16.0 mm sieves</td>
<td>±5.0%</td>
</tr>
<tr>
<td>Percent passing 13.2 mm and 9.5 mm sieves</td>
<td>±4.0%</td>
</tr>
<tr>
<td>Percent passing 4.75 mm, 2.36 mm, and 1.18 mm sieves</td>
<td>±3.0%</td>
</tr>
<tr>
<td>Percent passing 600 µm, 300 µm, and 150 µm sieves</td>
<td>No limits</td>
</tr>
<tr>
<td>Percent passing 75 µm sieve</td>
<td>±1.0%</td>
</tr>
<tr>
<td>Material</td>
<td>Quantity</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Asphalt cement</td>
<td>4 L evenly split between 2 containers</td>
</tr>
<tr>
<td>Aggregate</td>
<td>75 kg of each type</td>
</tr>
<tr>
<td>RAP</td>
<td>75 kg, required when RAP contained in the mix</td>
</tr>
<tr>
<td>Fines material passing 75 µm sieve</td>
<td>5 kg, when the mix is to be produced with a plant that returns fines to the mixture</td>
</tr>
<tr>
<td>Any other material samples including anti-stripping agents to be used in HMA</td>
<td>Quantity large enough to allow for a complete mix design</td>
</tr>
</tbody>
</table>
Appendix 1150-A: Commentary for OPSS 1150, November 2002

Note: This appendix does not form part of the standard specification. It is intended to provide information to the designer on the use of this specification in a Contract.

Designer Action/Considerations

OPSS 1150 has been updated to include the requirements of OPSS 1149, Material Requirements; OPSS 1155, Medium Duty Binder Course Mix and sections of OPSS 1154, Hot Mix Containing Reclaimed Asphalt Pavement. Excluded from this specification are the previously covered Electrically Conductive Mix and Open Friction Course Mix.

The designer shall specify the PGAC grade required for each HMA specified. The designer should be aware that high temperature PGAC grade adjustments may be required for facilities experiencing a high volume of heavy commercial traffic and a high frequency of slow moving or stop and start operations.

The designer may reduce mix stability requirements based on traffic volumes of less than 1,000 vehicles per lane or the fact that the facility type such as driveways, boulevards, and pathways may not require the Mix Marshall Stability specified. For reduced Marshall stability, Appendix 1150-B may be invoked by reference in the Contract Documents.

Based on local aggregate performance, the designer may reduce the 100% crushed requirement for HL 3HS. If so, Appendix 1150-C may be invoked by reference in the Contract Documents.

The designer should be aware that for low absorption aggregates, minimum asphalt cement contents may require adjustment.

The designer is required to specify the percentage of coarse aggregate in the HL 1 mix based on the posted traffic speed. A finer HL 1 mix allows more workability and may be more appropriate for use in urban areas. (Table 2)

The designer should be aware that RAP is permitted in all mixes except DFC, HL 1, HL 2, HL 3HS, and HDBC. (1150.04.01.01)

In this specification, HDBC and HL 3HS require 100% crushed aggregates from bedrock or oversize sources. The designer is required to specify in the Contract Documents where conditions require the aggregate to be only from an aggregate source.

When RAP is incorporated into the HMA, the designer should consider the grade of the PGAC according to the Ontario Superpave Implementation Committee current guidelines for use of PGAC in recycled hot mix.

Related Ontario Provincial Standard Drawings

None.
Appendix 1150-B: Additional Information for OPSS 1150, November 2002

Note: This appendix is not a mandatory part of the standard specification. However, it is written in mandatory language to permit invoking it by reference in the Contract Documents.

For low traffic volume facilities, Table 6 of OPSS 1150 is replaced by the table below:

<table>
<thead>
<tr>
<th></th>
<th>Minimum Marshall Stability: N at 60°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Course, except</td>
<td>6,700</td>
</tr>
<tr>
<td>for HL 2, HL 3F, and HL</td>
<td></td>
</tr>
<tr>
<td>4F</td>
<td></td>
</tr>
<tr>
<td>Binder, Levelling, and</td>
<td>5,800</td>
</tr>
<tr>
<td>Padding Courses, except</td>
<td></td>
</tr>
<tr>
<td>for HL 2, HL 3F, and HL</td>
<td></td>
</tr>
<tr>
<td>4F</td>
<td></td>
</tr>
<tr>
<td>HL 2, HL 3F, and HL 4F</td>
<td>5,800</td>
</tr>
<tr>
<td>Surface Course</td>
<td></td>
</tr>
<tr>
<td>HL 2, HL 3F, and HL 4F</td>
<td>4,400</td>
</tr>
<tr>
<td>Levelling and Binder</td>
<td></td>
</tr>
<tr>
<td>Courses</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 1150-C: Additional Information for OPSS 1150, November 2002

Note: This appendix is not a mandatory part of the standard specification. However, it is written in mandatory language to permit invoking it by reference in the Contract Documents.

When the 100% crushed requirement for the aggregates used in HL 3HS does not apply, Table 6 of OPSS 1150 is replaced by the table below:

<table>
<thead>
<tr>
<th></th>
<th>Minimum Marshall Stability: (N) at 60°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Course, except for HL 2, HL 3F, HL 4F, and HL 3HS</td>
<td>8,900</td>
</tr>
<tr>
<td>Binder, Levelling, and Padding Courses, except for HL 2, HL 3F, HL 4F, HL 3HS, and HDBC</td>
<td>8,000</td>
</tr>
<tr>
<td>HL 2, HL 3F, and HL 4F Surface Course</td>
<td>5,800</td>
</tr>
<tr>
<td>HL 2, HL 3F, and HL 4F Levelling and Binder Courses</td>
<td>4,400</td>
</tr>
<tr>
<td>HDBC</td>
<td>12,000</td>
</tr>
<tr>
<td>HL 3HS</td>
<td>14,000</td>
</tr>
</tbody>
</table>